智能模组的前世今生

2024-08-04 08:15:45

  oT等技术在发展的同时也正在加速融合。随着5G+AIoT技术的兴起,市场对5G的需求不断变大。与此同时,通信模组的5G智能化也成为了一种趋势,向各类应用领域深入和拓展。

  传统的IoT蜂窝模组,模组厂商只是提供了一个可以用作语音或者数据传输的Modem载体,在终端客户的设计中是以一个选配件的方式存在,我们把它称作蜂窝模组1.0时代;

  在不断的技术演进和客户需求变化中,很多客户提出要将原来的纯数传模组进行深入开发,将模组从一个封闭式的系统逐步变成Open的方案,也就是大家俗称的OpenCPU。将模组自身的Arm架构能力做进一步释放,同时支持标准的A,使终端客户可以对模组进行一定的适配,以便于支持简单的外设,我们称之为蜂窝模组2.0时代;

  曾经,Symbian、Windows在智能手机中占据主导地位,而随后的Android系统以其革命性的创新,将一些老牌的操作系统逐步淘汰,目前形成了三足鼎立的状态:Android、AppleiOSHarmonyOS。由于Android的开源特性,智能化IoT的需求也随之而来,用户希望可以定制客户界面、植入定制的APP、接入不同的显示设备、进行人脸识别/人脸支付、进行多媒体视频交互.……我们将这个技术的演进称为蜂窝模组3.0时代。

  智能模组,具备通信模组特性,支持5G/4G/3G/2G的广域网接入。同时,智能模组自带Android、HarmonyOS等复杂的操作系统,具备开放安全的软件环境;自带CPU、GPU算力,高度集成化,支持GNSS、Wi-Fi4/5/6、BT/BLE。智能模组拥有丰富接口,可扩展复杂外设,例如:LCM/TP/Camera等外设需求,以及多路的UART/IIC/SPI,方便用户串接各种SensorNFC、扫码头、指纹识别等外扩设备。相较于传统的AP+Modem搭配方式,智能模组的尺寸更小,价格更有优势。

  2014年,美格智能团队设计出了第一款4G智能模组——SLM753,该模组采用高通MSM8916平台,这款SOC芯片也是高通史上最成功的4G芯片之一。尺寸为38*43mm,该模组被广泛应用于VoIP对讲机、智能物流终端、智能POS设备以及车载娱乐等领域。SLM753的生命周期长达六年,累计销售300多万片,截止今日,仍在为一些终端客户做维护工作。

  2017年,美格智能推出了第一代智能算力模组——SLM758,该模组采用高通MSM8953(SD625/626)的平台,支持高通SNPE神经元算法,支持0.2-0.5T智能算力,模组搭载了第三方的ADAS/DMS算法,围绕人脸识别、人脸支付、疲劳监测、危险行为预判等领域,布局多款终端产品。在国家针对“两客一危”特殊车辆安装4G动态视频监控系统中,美格智能的这款智能算力模组也为国家做到了添砖加瓦的作用。截止今日,该模组累计出货300多万片。

  2020-2021年,美格智能推出了第一代5G高算力智能模组SRM900L、SRM900、SRM910与SRM930,形成“低、中、高”三档5G高算力智能模组全覆盖,算力从2T-14T,四款模组做到了模组外围硬件的设计兼容,大大提升了客户选型的灵活性。

  未来,以5G+AIoT为核心的智能化产业链智慧升级越发加速,蜂窝模组4.0/5.0也会在未来都逐步实现。作为智能模组及解决方案的创领者、全球领先的无线通信模组及解决方案提供商,美格智能将继续保持智能模组行业的领先优势,加大新产品的研发投入与推广,以智能模组+物联网定制化解决方案,助力5G网络下的视频记录仪、智慧驾舱、智能POS收银机、物流终端、VRCamera、智能机器人、视频监控、安防监控、智能信息采集设备、智能手持终端、无人机等千行百业的智能化升级。

  一、初始阶段(1960-1970)1960年代末:嵌入式系统的概念开始形成,最初用于专业的军事和航天应用,例如用于导弹控制的计算机系统。微处理器的诞生:1971年,英特尔推出了4004芯片,这是世界上第一个商用微处理器。它的出现标志着嵌入式系统发展的一个里程碑,使得更小型、成本更低的电子设备设计成为可能。二、发展阶段(1980年代)个人计算机(PC)的普及:

  竞争冒险:在组合电路中,当逻辑门有两个互补输入信号同时向相反状态变化时,输出端可能产生过渡干扰脉冲的现象,称为竞争冒险。那么 FPGA 产生竞争冒险的原因是什么呢? 信号在 FPGA 器件内部通过连线和逻辑单元时,都有一定的延时。 延时的大小与连线的长短和逻辑单元的数目有关 同时还受器件的制造工艺、工作电压、温度等条件的影响 信号的高低电平转换也需要一定的过渡时间 。由于以上存在的因素,多路信号的电平值发生变化时,在信号变化的瞬间,组合逻辑的输出有先后顺序,并不是同时变化往往会出现一些不正确的尖峰信号,这些尖峰信号称为毛刺 。如果一个组合逻辑电路中有毛刺出现,就说明该电路存在冒险 。与分立元件不同,由于 PLD 内部不存在寄生电容电感,这些毛刺将被完整的保留并向下一级传递,因此毛刺现象在 PLD 、 FPGA 设计中尤为突出 。 毛刺的累加 将会影响整个设计的可靠性和精确性 。因此判断逻辑电路中是否存在冒险以及如何避免冒险是 FPGA 设计人员必须要考虑的问题。 接下来我们就要考虑如何消除冒险 ,消除冒险的方式有一下几种: 1、利用冗余项消除毛刺 函数式和真值表所描述的是静态逻辑,而竞争则是从一种 稳态到另一种稳态的过程。因此竞争是动态过程,它发生在输入变量变化时。此时,修改卡诺图,增加多余项,在卡诺图的两圆相切处增加一个圆,可以消除逻辑冒险。但该法对于计数器型产生的毛刺是无法消除的。 2、采用格雷码 我们可以通过改变设计,破坏毛刺产生的条件,来减少毛刺的发生。例如,在数字电路设计中,常常采用格雷码计数器取代普通的二进制计数器,这是因为格雷码计数器的输出每次只有一位跳变 消除了竞争冒险的发生条件,避免了毛刺的产生。 3、采样法 由于冒险出现在变量发生变化的时刻,如果待信号稳定之后加入取样脉冲,那么就只有在取样脉冲作用期间输出的信号才能有效。这样可以避免产生的毛刺影响输出波形。 一般说来,冒险出现在信号发生电平转换的时刻,也就是说在输出信号的建立时间内会发生冒险,而在输出信号 的保持时间内是不会有毛刺信号出现的。如果在输出信号的保持时间内对其进行采样,就可以消除毛刺信号的影响。 4、吸收法 增加输出滤波,在输出端接上小电容C可以滤除毛刺 。但输出波形的前后沿将变坏,在对波形要求较严格时,应再加整形电路,该方法不宜在中间级使用。 5、延迟办法 因为毛刺最终是由于延迟造成的,所以可以找出产生延迟的支路。对于相对延迟小的支路,加上毛刺宽度 的延迟可以消除毛刺。 还可以用高频时钟来驱动一移位寄存器,待延时信号作数据输入,按所需延时正确设置移位寄存器的级数 ,移位寄存器的输出即为延时后的信号。 当然最好的就是,在设计之初,就对竞争冒险进行规避,具体规避方法有: 1、在设计中每一个模块中只用一个时钟,避免使用多时钟设计,同时避免使用主时钟分频后的二次时钟作为时序器件的时钟输入, 因为时钟偏斜会比较大 。 2、设计译码逻辑电路时必须十分小心,因为译码器和比较器本身会产生尖峰,容易产生毛刺,把译码器或比较器的输出直接连到时钟输入端或异步清除端,会造成严重的后果。 3、在设计中 应该尽量避免隐含 RS 触发器的出现。一般要控制输出被直接反馈到输入端,采用反馈环路会出现隐含 RS 触发器,其对输入尖峰和假信号很敏感,输入端有任何变化都有可能使输出值立刻改变,此时易造成毛刺的产生,导致时序的严重混乱。 4、在设计电路时 要用寄存器和触发器设计电路,尽量不要用锁存器,因它对输入信号的毛刺太敏感。如果坚持用锁存器设计必须保证输入信号绝对没有毛刺,且满足保持时间。 5、在设计中充分利用资源 ,因为 大部分 FPGA 器件都为时钟、复位、预置等信号提供特殊的全局布线资源,要充分利用这些资源。 6、在设计中 不论是控制信号还是地址总线信号、数据总线信号,都要采用另外的寄存器,以使内部歪斜的数据变成同步数据。 7、在设计中 应该尽 量避免使用延迟线,因它对工艺过程的变化极为敏感,会大大降低电路的稳定性和可靠性,并将为测试带来麻烦。 8、在设计中 对所有模块的输入时钟、输入信号、输出信号都用D触发器或寄存器进行同步处理,即输出信号直接来自触发器或寄存器的输出端。这样可以消除尖峰和毛刺信号。

  机器人主要是用于代替人工作的,首先它是一个机器。对于传统的机器,被使用者设计制造出来后,它的工作步骤、路径都是确定的。机器的设计也是根据它所应用的工作而进行的。

  说起路由器,如果再往前10年,可能还不是那么普及,但如今再提及,基本上已经是家家户户必备的科技产品之一,无论是老人还是小孩对它也都很熟悉了,这样的变化不禁让人感叹科技的发展之快。

  ,包括其发展历程、应用场景、面临的挑战以及未来发展趋势。 二、情感语音识别的发展历程 起步阶段:早期的情感语音识别技术主要依赖于声谱分析、特征提取等传统信号处理方法,但这

  前面的文章大体介绍了TOC下的低结存,计划统一性原则,列队生产,日结日清,品质问题碎片化等,有很多朋友问是否基石公司不再做数字化,而做流程梳理,非也!其实所有不同的制造业生产方式都有

  (十一) /

  活中不可或缺的小家电之一,这个看似简单的设备,已经走过了漫长的发展历程,从它的

  【其利天下高速风筒方案开发】  /

  01、 鸿蒙操作系统发展沿革 鸿蒙这个名字意为“万物起源”,同时也寓意国产操作系统的开端。鸿蒙操作系统迭代至今,已经有好几个版本,笔者将它的迭代顺序整理成时间轴,帮助大家梳理鸿蒙操作系统的发展沿革。如图1所示。 2012年,华为总裁任正非表示:“华为做终端操作系统是出于战略的考虑。”鸿蒙操作系统的概念首次出现在大众的视野。 2016年5月,鸿蒙正式在华为公司的软件部内部立项并开始投入研发,吹响了研发鸿蒙操作系统的号角。 2019年8月9号,华为正式发布了HarmonyOS 1.0,该系统率先部署在智慧屏上。2019年8月10日,(原)荣耀正式发布荣耀智慧屏、荣耀智慧屏Pro,搭载鸿蒙操作系统。华为消费者业务CEO余承东在发布会上宣布鸿蒙将进行开源。 2020年9月10日,华为发布HarmonyOS 2.0。相较于HarmonyOS 1.0,此版本主要在3个方面做出重大提升:分布式的软总线、分布式的数据管理及分布式的安全,这三点将HarmonyOS的分布式能力提升到了另一个层次, 此版本可用于大屏、手表和车机。 2020年12月,华为发布面向开发者提供了手机版本HarmonyOS 2.0的Beta版本,开发者可以访问华为开发者联盟官网 ,申请获取 HarmonyOS 2.0 手机开发者 Beta 版升级 。 2021年6月2号,华为发布可以覆盖手机等移动终端的HarmonyOS 2.0。 当时发布的系统不仅限于开发者申请升级,凡是符合条件的机型都可以尝鲜鸿蒙。可以升级该系统的设备共包含了26部华为手机、14部Honor(荣耀)手机、3部华为手表和3台平板计算机,还包括当时尚未发布的Honor V40、Huawei nova 8和Huawei nova 8 Pro三款机型。如图2所示。 ■ 图2HarmonyOS 2.0部分适配机型 至此,正式面向市场的覆盖手机等移动终端的鸿蒙操作系统就正式诞生了! 02、HarmonyOS 2.0和OpenHarmony 2.0的关系 在介绍HarmonyOS 2.0和OpenHarmony 2.0的关系之前,首先要介绍一个功不可没的组织——开放原子开源基金会。 该基金会成立于2020年6月15日,是由工信部牵头在民政部注册的非盈利性民间组织机构,也是国内首个开源软件基金会,如图3所示。 华为于2020年9月10号将HarmonyOS 2.0源码捐赠给开放原子开源基金会孵化,得到OpenHarmonyOS 1.0并开放下载。 2020年12月22号,OpenHarmony全场景分布式终端操作系统(以下简称OpenHarmony)项目群正式成立,该项目群是由中国科学院软件所、华为终端公司、京东集团等7家单位组成,共同规划OpenHarmony的持续发展。 2021年6月2日发布会上,开放原子开源基金会将孵化的OpenHarmony 2.0 全量开源发布。 ■ 图3OpenHarmony操作系统的发展沿革 至此,HarmonyOS和OpenHarmonyOS 的关系便一目了然。 如图4所示,HarmonyOS实际上分为3个部分,OpenHarmonyOS、包括HMS在内的闭源应用与服务,以及其他开放源代码。 其中OpenHarmonyOS 是鸿蒙操作系统中开源的部分,类似于安卓系统中的AOSP项目,该项目目前由开放原子开源基金会负责社区化的开源运营,而HarmonyOS是基于OpenHarmonyOS 的商用发行版。 ■ 图4 鸿蒙操作系统示意图 03、鸿蒙操作系统的前景 鸿蒙操作系统是一款“面向未来”的操作系统,它创造性地提出了“一次开发,多端部署”的分布式理念,具有以下几个显著优势: 分布式软总线:提供了统一的分布式通信能力,能够快速发现并连接设备,高效地传输任务和数据。 分布式数据管理:应用跨设备运行时数据无缝衔接,让跨设备数据处理如同本地一样便捷。 分布式任务调度:能够选择最合适的设备运行分布式任务,并实现多设备间的能力互助。 分布式设备虚拟化:匹配并选择能力最佳的执行硬件,让业务连续地在不同设备间流转,充分发挥不同设备的资源优势。 一次开发,多端部署:使用统一的IDE进行多设备的应用开发,通过模块化耦合对应不同设备间的弹性部署。 统一OS,弹性部署:为各种硬件开发提供全栈的软件解决方案,并保持了上层接口和分布式能力的统一。 借助以上优势, 鸿蒙操作系统可实现不同终端设备之间的极速连接、硬件互助和资源共享,为不同的群体带来升级体验: 对消费者而言, 鸿蒙操作系统能够将生活场景中的各类终端进行能力整合,可以实现不同终端设备之间的快速连接、能力互助、资源共享,匹配合适的设备、提供流畅的全场景体验。 对应用开发者而言, 鸿蒙操作系统采用了多种分布式技术,使应用程序的开发实现与不同终端设备的形态差异无关。这能够让开发者聚焦上层业务逻辑,更加便捷、高效地开发应用。 对设备开发者而言, 鸿蒙操作系统采用了组件化的设计方案,可以根据设备的资源能力和业务特征进行灵活裁剪,满足不同形态的终端设备对于操作系统的要求。 因为以上这些不可替代的优势,鸿蒙操作系统正在逐步壮大,已经成为众多企业和群众关注的热点,希望鸿蒙操作系统在未来可以给大家带来更多的惊喜!

  凯发在线

  恒定导通时间(COT)控制作为电源界的新宠,广泛应用于计算领域核心IC的供电。随着人工

  1 前言 在此之前,NXP已经推出了基于Cortex-M0内核的LPC1100(2009年),代号“吸血鱼”(亚马逊河中的一种小鱼,据称能进入在河中洗澡的人体内),意为小而极具攻击性。 LPC800的开发代号“哪吒”,意为小而勇敢。为什么要在LPC1100推出3年之后,又推出LPC800系列?“哪吒”的背后,有什么鲜为人知的故事? 2 LPC800哪吒的诞生 “哪吒”项目的策划始于2009年初,LPC1100刚刚发布不久,LPC团队就提出了一个大胆的想法:能否让32位MCU跟8位单片机一样简单易用?很快,

  美格智能亮相2024 ChinaJoy骁龙主题馆,展现数字娱乐的无限可能

  美格智能携手高通及四大运营商重磅发布新款5G-A毫米波MiFi解决方案,开启智能连接新时代

  驱动LSM6DS3TR-C实现高效运动检测与数据采集(10)----融合磁力计进行姿态解算

  2024年上海海思MCU开发者体验官招募,手机/MatePad大奖等你拿!

服务热线

0898-08980898

© Copyright © k8凯发(中国)天生赢家·一触即发 版权所有

地址:江西省南昌市
电话:0898-08980898